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1. Introduction

Quark masses are fundamental parameters of the Standard Model (SM) and thus it is

desirable to determine their numerical values with the highest possible precision. In order

to do so it is necessary to fix a renormalization scheme which defines the quark mass. A

renormalization scheme which is of particular importance in those situations where the

quark mass is small as compared to the typical energy scale is the MS scheme. Although

it has no immediate physical interpretation, in general a good convergence in perturbation

theory is observed. On the other hand, the most intuitive renormalization scheme is the

on-shell scheme where the renormalized quark mass is defined as the pole of the propagator.

It is well known that such a definition is plagued by numerically large long-distance effects

which are connected to the renormalon corrections. As a consequence one observes a bad

behaviour of the perturbative expansion if the pole mass is used as a parameter. Still, it is

implicitly used in all computations of threshold phenomena like energy levels or the decay of

a quark-anti-quark bound state. In practical calculations the pole mass is often traded for

an appropriately defined short-distance mass, like the 1S [1], potential subtracted (PS) [2],

kinetic [3] or renormalon subtracted (RS) [4] mass. In order to make contact between high-

energy phenomena on one side and threshold processes on the other side it is necessary

to have a precise relation between the pole and the MS quark mass at hand. Important

three-loop contributions are provided in this paper. As a by-product we also compute the

same kind of corrections to the wave function renormalization constant.
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The one-loop corrections to the relation between the MS and on-shell mass have been

computed almost 30 years ago in ref. [5]. About ten years later, the two-loop corrections

have been calculated in ref. [6]. Shortly afterwards also the two-loop result for the on-

shell wave function renormalization constant ZOS
2 has been obtained [7]. Contributions

with a single mass scale were expressed via master integrals exactly in d = 4 − 2ε; the

ε-expansion of the only non-trivial master integral is known [8, 9] far enough to obtain

O(ε4) terms in ZOS
m and ZOS

2 . Contributions with two mass scales were obtained up to

O(1) only. Later, a reduction algorithm for two-loop two-scale on-shell integrals has been

constructed, and expressions via master integrals exact in d have been obtained [10].1 The

three-loop relation between the MS and on-shell mass has been computed at the end of

the nineties in a semi-numerical way in refs. [13, 14] where the off-shell fermion propagator

has been considered for small and large external momenta. The on-shell quantities have

been obtained with the help of a conformal mapping and Padé approximation. Later the

results have been confirmed in ref. [15] by an analytical on-shell calculation. The three-loop

result for ZOS
2 has been obtained in ref. [16]. Both analytical calculations have recently

been rederived in ref. [17]. In this paper we complete the three-loop results for the mass

counterterm ZOS
m and ZOS

2 by computing the contributions where a second mass scale is

present through a closed quark loop. We would like to mention that the approximation

linear in the mass ratio has been derived in ref. [18] using the corresponding corrections

to the static potential [19] and their cancellation in the relation between the MS and 1S

quark mass.

We concentrate on the situation where the second quark mass is smaller than the

external one, although our formulae can also be applied to the reversed situation. Then,

however, often it is advantageous to perform a decoupling of the heavy mass leading to an

effective theory where the latter is integrated out.

The corrections to the relation between the MS and on-shell mass are of practical

relevance for the bottom quark where the second mass scale is given by the charm quark.

In this case we have for the mass ratio mc/mb ≈ 0.3. Thus the massless approximation

does not provide a good result. In all other cases the effect from a lighter quark mass is

negligible. Nevertheless, below generic results are presented.

In principle at three-loop order there is also a contribution involving two additional

masses which are present in two closed fermion loops. However, for all practical applications

the lightest quark mass can safely be neglected.

The remainder of the paper is organized as follows: in section 2 we discuss the frame-

work which is used for the calculation. Afterwards the results for the relation between the

on-shell and MS quark mass and the wave function renormalization constant are discussed

in sections 3 and 4, respectively. Since the analytical expressions are quite involved we

present in both cases handy approximation formulae of our results. Finally, section 5 con-

tains a simple application and our conclusions. Appendix A lists all master integrals in

graphical from.

1The ε-expansion of the two non-trivial master integrals was only obtained up to O(1). One of these

integrals was later expanded to O
`

ε5
´

[11] (though only the O(ε) term is published). Both integrals were

calculated [12] up to O(ε), as series in the mass ratio up to the sixth order.
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2. On-shell renormalization of quark mass and wave function

The formulae relevant for the computation of the renormalization constants for the mass

and wave function have been derived in refs. [16, 17]. For completeness we repeat the

resulting expressions which read

ZOS
m = 1 + Σ1(M

2
q ,Mq) , (2.1)

(

ZOS
2

)−1
= 1 + 2M2

q

∂

∂q2
Σ1(q

2,Mq)
∣

∣

∣

q2=M2
q

+ Σ2(M
2
q ,Mq) , (2.2)

where ZOS
m and ZOS

2 are defined through

mq,0 = ZOS
m Mq , (2.3)

ψ0 =
√

ZOS
2 ψ . (2.4)

ψ is the quark field renormalized in the on-shell scheme with mass mq, Mq is the on-shell

mass and bare quantities are denoted by a subscript 0. Σ denotes the quark self-energy

contributions which can be decomposed as

Σ(q,mq) = mq Σ1(q
2,mq) + (q/ − mq)Σ2(q

2,mq) . (2.5)

For completeness let us also introduce the MS renormalization constant via

mq,0 = ZMS
m mq(µ) . (2.6)

The quantities on the right-hand side of eqs. (2.1) and (2.2) are obtained by considering

the external momentum of the quarks to be q = Q(1 + t) with Q2 = M2
q . The application

of the projector (Q/ + Mq)/(4M
2
q ) and an expansion to first order in t leads to

Tr

{

Q/ + Mq

4M2
q

Σ(q,Mq)

}

= Σ1(q
2,Mq) + tΣ2(q

2,Mq)

= Σ1(M
2
q ,Mq) +

(

2M2
q

∂

∂q2
Σ1(q

2,Mq)
∣

∣

∣

q2=M2
q

+Σ2(M
2
q ,Mq)

)

t

+O
(

t2
)

. (2.7)

Thus, to obtain ZOS
m one only needs to calculate Σ1 for q2 = M2

q . To calculate ZOS
2 , one

has to compute the first derivative of the self-energy diagrams. The mass renormalization

is taken into account iteratively by calculating one- and two-loop diagrams with zero-

momentum insertions.

The results for the renormalization constants can be cast into the following form

ZOS
i = 1 +

αs(µ)

π

(

eγE

4π

)−ε

δZ
(1)
i +

(

αs(µ)

π

)2 (

eγE

4π

)−2ε

δZ
(2)
i

+

(

αs(µ)

π

)3 (

eγE

4π

)−3ε

δZ
(3)
i + O

(

α4
s

)

, (2.8)
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Figure 1: All three-loop heavy-quark self-energy diagrams containing nm. Thick solid lines

denote massive quarks with mass mq and thin ones quarks with mass mf . Wavy lines denote

gluons and crosses mark counterterm insertions. The shaded blob denotes the sum of one-loop

massless self-energy insertions (massless quarks, gluons, ghosts).

with i ∈ {m, 2}. It is convenient to further decompose the two- and three-loop contribution

in terms of the different colour factors

δZ
(2)
i (x) = C2

F ZFF
i + CF CA ZFA

i + +CF TF nlZ
FL
i + CF TF nhZFH

i + CF TF nmZFM
i (x)

δZ
(3)
i (x) = C3

F ZFFF
i + C2

F CA ZFFA
i + CF C2

A ZFAA
i + CF TF nl

(

CF ZFFL
i + CA ZFAL

i

+TF nl Z
FLL
i + TF nh ZFHL

i + TF nm ZFML
i (x)

)

+ CF TF nh

(

CF ZFFH
i + CA ZFAH

i + TF nh ZFHH
i + TF nm ZFMH

i (x)
)

+ CF TF nm

(

CF ZFFM
i (x) + CA ZFAM

i (x) + TF nm ZFMM
i (x)

)

, (2.9)

where nl and nh mark the closed quark loops with mass zero and mq, respectively. nm labels

the closed quark loops involving a second mass scale which we denote as mf . Although

we have nh = 1 and nm = 1 in our applications, we keep a generic label which is useful

when tracing the origin of the individual contributions. In eq. (2.9) CF = (N2
c − 1)/(2Nc)

and CA = Nc are the eigenvalues of the quadratic Casimir operators of the fundamental

and adjoint representation of SU(Nc), respectively. In the case of QCD we have Nc = 3.

TF = 1/2 is the index of the fundamental representation and nf = nl + nh + nm is the

number of quark flavours. αs(µ) is the strong coupling constant defined in the MS scheme
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with nf active flavours. The coefficients proportional to nm are functions of the mass ratio

which we define by

x =
Mf

Mq
, (2.10)

i.e. the ratio of the on-shell masses. The dependence of the coefficients in eq. (2.9) on Lµ =

log µ2/M2
q is suppressed. The Feynman diagrams producing nm-dependent contributions

to ZOS
m and ZOS

2 are shown in figure 1.

The one-loop result for ZOS
m expanded up to order ε2 can be found in eq. (13) of ref. [17]

and the expression for δZ
(2)
m |nm=0 including O(ε) terms is given in eq. (14) of the same

reference. ZFM
m and ZFM

2 have been computed in analytic form in ref. [6]. The main

result of this paper are the functions ZFFM
m , ZFAM

m , ZFLM
m , ZFHM

m and ZFMM
m which are

discussed in section 3.

In the case of the mass renormalization it is convenient to consider the ratio between

the on-shell and MS renormalization constants

zm =
ZOS

m

ZMS
m

=
mq

Mq
(2.11)

which is finite. We furthermore adopt the notation introduced in eqs. (2.8) and (2.9) for

ZOS
m also for zm. Let us for later reference provide already here the result for the MS

renormalization constant which is given by [20]

ZMS
m = 1 +

∞
∑

i=1

Ci

(

αs(µ)

π

)i

, (2.12)

with

C1 = −
1

ε
,

C2 =
1

ε2

(

15

8
−

1

12
nf

)

+
1

ε

(

−
101

48
+

5

72
nf

)

,

C3 =
1

ε3

(

−
65

16
+

7

18
nf −

1

108
n2

f

)

+
1

ε2

(

2329

288
−

25

36
nf +

5

648
n2

f

)

+
1

ε

(

−
1249

192
+

5

18
ζ3nf +

277

648
nf +

35

3888
n2

f

)

. (2.13)

As far as the wave function renormalization constant is concerned, we have at the

one-loop level δZ
(1)
2 = δZ

(1)
m and the two-loop contributions for nm = 0, including order ε

terms, can be found in eq. (25) of ref. [17]. The results for the functions ZFFM
2 , ZFAM

2 ,

ZFLM
2 , ZFHM

2 and ZFMM
2 are discussed in section 4.

Starting from the three-loop level, the wave function renormalization constant depends

on the gauge parameter, ξ, which we define through the gluon propagator as

Dab
µν(k) = −

i

k2

(

gµν − ξ
kµkν

k2

)

δab , (2.14)

where a and b are colour indices.
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Figure 2: The two-loop correction zFM
m as a function of x at µ = Mq. Next to the exact result

(solid line) also the approximations for x → 0 (dash-dotted line) and for x → 1 (dashed line) are

shown including the linear terms.

3. On-shell mass relation

3.1 Two-loop result

Before discussing in detail the three-loop result let us consider the two-loop quantity zFM
m .

The analytical result can be found in ref. [6] and is given by

zFM
m =

1

96

{

48x4 log2(x) + 48x2 log(x) + 72x2 + 4Lµ(3Lµ + 13)

+8π2
(

x4 − 3x3 − 3x + 1
)

+ 71

−48(x + 1)2
(

x2 − x + 1
)

[log(x) log(x + 1) + Li2(−x)]

−48(x − 1)2
(

x2 + x + 1
)

[log(x) log(1 − x) + Li2(x)]
}

, (3.1)

where Lµ = log(µ2/M2
q ) and Li2 is the dilogarithm. In our approach all occuring inte-

grals are reduced to four master integrals [10]. The Harmonic Polylogarithms (HPL) [21]

which appear in a first step in the results of these integrals can be transformed into the

(di)logarithms of eq. (3.1) resulting in complete agreement with ref. [6].2

In figure 2 zFM
m is shown as a function of x for µ2 = M2

q . In addition to the exact

result we also show the curves corresponding to the linear approximations for x → 0 and

x → 1. One observes a rapid convergence of both expansions which almost extends to

x = 1 (x = 0) once the x10 ((1 − x)10) terms are included. Note that the x5 terms are

sufficient in order to provide an excellent approximation far below the per mill level for

x = 0.3. We also want to mention that a 12% deviation is observed (for x = 0.3) if only

the linear terms in x are included into the expansion.

2A trivial overall factor CF = 4/3 is actually missing in eqs. (17) and (20) of this reference.
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Let us finally provide an approximation formula [6] which agrees to better than 1%

with the analytical formula of eq. (3.1):

z̃FM
m = 1.562 − 2.394x + 0.9428x2 − 0.2666x3 +

13

24
Lµ +

1

8
L2

µ . (3.2)

3.2 Three-loop corrections

At three-loop order we want to discuss in a first step the coefficients of the five nm-

dependent colour structures but afterwards also consider the physical quantity which is

obtained after inserting the numerical values for the QCD colour factors.

All Feynman diagrams are generated with QGRAF [22] and the various topologies are

identified with the help of q2e and exp [23, 24]. In a second calculation the three-loop

diagrams were generated starting from three generic topologies which already appear in

the calculation of ref. [25]. In a next step the reduction of the various functions to so-called

master integrals (MI’s) has to be achieved. For this step we use the so-called Laporta

method [26, 27] which reduces the three-loop integrals to 27 MI’s. We use the implemen-

tation of Laporta’s algorithm in the program Crusher [28]. It is written in C++ and uses

GiNaC [29] for simple manipulations like taking derivatives of polynomial quantities. In the

practical implementation of the Laporta algorithm one of the most time-consuming oper-

ations is the simplification of the coefficients appearing in front of the individual integrals.

This task is performed with the help of Fermat [30] where a special interface has been used

(see ref. [31]). The main features of the implementation are the automated generation of

the integration-by-parts (IBP) identities [32], a complete symmetrization of the diagrams

and the possibility to use multiprocessor environments.

In figures 7–10 of appendix A a graphical representation of the master integrals can be

found. We have chosen two independent ways to compute the ε-expansion of the master

integrals. The first one relies on the Mellin-Barnes technique (see, e.g., ref. [33]) and

provides us with numerical results. Here we have used the Mathematica package MB.m [34].

With the help of our second method, based on differential equations, ref. [35], we were able

to evaluate all but four master integrals in analytic form. More details can be found in

ref. [36].

The coefficient functions of all master integrals contain a 1/ε pole, some even a 1/ε2

term which means that the master integrals have to be expanded up to order ε and ε2,

respectively. All but four master integrals could be evaluated analytically in terms of HPLs

which we evaluate numerically with the help of the Mathematica package HPL.m [37, 38].

Two of the remaining four integrals, which are all needed up to order ε, could be computed

including the constant term [36] and for the residual two integrals analytical results are

obtained for the pole parts. For the still remaining six coefficients integral representations

are available which in the worst case are two-dimensional.

Close to x = 0 we observe large cancellations between the contributions originating

from different master integrals. On the other hand, as we have seen above, the expansion

for x ≪ 1 converges very fast; at two-loop order the first five terms approximate the exact

result to 0.02% for x = 0.3 which is relevant for the charm mass effects to the bottom

quark mass. For this reason we decided to derive an expansion of our result including

– 7 –
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Figure 3: zFFM
m , zFAM

m , zFLM
m , zFHM

m and zFMM
m as a function of x. The exact curves are

represented by the thick and the linear approximations for small x by the thin lines.

terms of order x8. The results expressed in terms of HPLs can simply be expanded using

HPL.m [37, 38]. For the remaining coefficients we use their Mellin-Barnes representation in

order to express them in terms of multiple sums which in turn leads to the coefficients of

xn.

Our result for the five functions zFFM
m , zFAM

m , zFLM
m , zFHM

m and zFMM
m are shown in

figure 3 for 0 ≤ x ≤ 1. The exact results are represented by thick lines and the expansion

terms for x → 0 up to the linear term as thin lines. The latter provide a good approximation

to the exact results up to about x ≈ 0.1 . . . 0.4, depending on the colour structure. We

want to mention that the expansion terms including corrections of order x8 provide a good

approximation almost up to x = 1. Note that for x = 0.3 the linear approximation deviates

from the exact result (obtained by the proper sum of the individual colour structures) by

8%, whereas the deviation including terms up to x5 is only 0.008%.

The x-dependence of the individual curves is rather flat, in particular close to x = 1

— except for zFAM
m . The latter varies from +13.10 for x = 0 to −1.52 for x = 1 with a

zero for x ≈ 0.81. It is interesting to note that the coefficient of C2
F TF nm is positive for

0 ≤ x ≤ 1 whereas the contributions originating from the diagrams involving two closed

fermion loops are negative and furthermore numerically smaller in a large part of the x

interval.

The boundary terms for x = 0 and x = 1 can be extracted from the known single-scale

– 8 –
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three-loop results [14, 13, 15, 17] and are given by

zFFM
m (0) = zFFL

m ≈ 0.842 , zFFM
m (1) = zFFH

m ≈ 2.494 ,

zFAM
m (0) = zFAL

m ≈ 13.099 , zFAM
m (1) = zFAH

m ≈ −1.522 ,

zFLM
m (0) = 2zFLL

m ≈ −3.916 , zFLM
m (1) = zFHL

m ≈ −0.067 ,

zFHM
m (0) = zFHL

m ≈ −0.067 , zFHM
m (1) = 2zFHH

m ≈ −0.384 ,

zFMM
m (0) = zFLL

m ≈ −1.958 , zFMM
m (1) = zFHH

m ≈ −0.192 . (3.3)

These limits constitute an important cross check of our calculation. We find perfect agree-

ment with the known results.

We refrain from listing explicit results for the x-dependent coefficients which can be ob-

tained at the URL http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp07/ttp07-21/.

Instead we provide approximation formulae which have an accuracy of better than 1% for

0 ≤ x ≤ 1. They are inspired by the expansion for small values of x and the behaviour for

x = 1.3 We obtain

z̃FFM
m = 0.842 + 4.333x − 1.365x2 + 3.136x2 log x − 1.316x3

+Lµ

(

−0.972 + 1.820x − 0.811x2 + 0.279x3
)

−
13

32
L2

µ −
3

32
L3

µ ,

z̃FAM
m = 13.099 − 12.945x + 9.041x log x − 1.676x2

+Lµ

(

6.724 − 4.407x + 1.807x2 − 0.549x3
)

+
373

288
L2

µ +
11

72
L3

µ ,

z̃FLM
m = −3.916 + 2.948x − 3.304x log x + 0.901x2

+Lµ

(

−1.921 + 1.604x − 0.660x2 + 0.201x3
)

−
13

36
L2

µ −
1

18
L3

µ ,

z̃FHM
m = −0.067 − 0.612x2 + 0.443x3 − 0.148x4

+Lµ

(

−0.776 + 1.597x − 0.631x2 + 0.179x3
)

−
13

36
L2

µ −
1

18
L3

µ ,

z̃FMM
m = −1.958 + 0.501x − 3.403x log x + 1.264x2 − 0.103x3 log x

+Lµ

(

−0.960 + 1.600x − 0.653x2 + 0.198x3
)

−
13

72
L2

µ −
1

36
L3

µ . (3.4)

Let us in the following consider the result in the case of QCD, i.e., we set CF =

4/3, CA = 3, TF = 1/2, nh = 1, nm = 1 and define the quantities

z(2),M
m = CF TF zFM

m , (3.5)

z(3),M
m = C2

F TF zFFM
m + CF CATF zFAM

m + CF T 2
F zFML

m + CF T 2
F zFMH

m + CF T 2
F zFMM

m .

Evaluating the coefficients for the z-expansion in numerical form the results become very

compact and are given by (µ2 = M2
q )

z(2),M
m = + x0 (1.0414) + x1 (−1.6449) + x2 (1.0000) + x3 (−1.6449)

+ x4
(

1.2474 − 0.7222Lx + 0.3333L2
x

)

+ x6 (−0.0844 + 0.0889Lx)

+ x8 (−0.0118 + 0.0214Lx) ,

3We want to mention that the formulae provided on the web page are valid for 0 ≤ x ≤ 5.
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Figure 4: z
(3),M
m as a function of x where nl = 3 and µ2 = M2

q has been chosen. The exact result

is is shown together with the the expansions up to xn (n = 1, 3, 5, 8) (dotted line to long-dashed

line).

z(3),M
m = + x0 (26.2712 − 1.3054nl)

+ x1 (−21.0921 + 16.9977Lx + 1.0385nl − 1.0966Lxnl)

+ x2 (12.7021 + 10.6870Lx − 0.2222nl)

+ x3 (−13.0084 + 16.5103Lx − 0.2408nl − 1.0966Lxnl)

+ x4
[

−4.1035 + 0.1938Lx − 0.2593L3
x + 0.7919L2

x + nl (0.3613 − 0.2822Lx

+0.0741L3
x − 0.2407L2

x

)]

+ x5 (−1.4908 + 2.8512Lx + 0.4935nl)

+ x6
(

0.1654 − 0.5756Lx + 0.8224L2
x − 0.1873nl + 0.0267Lxnl

)

+ x7 (−0.1751 + 0.5452Lx + 0.0653nl)

+ x8
[

−0.0705 + 0.0492Lx + 0.3125L2
x + nl (−0.0377 + 0.0025Lx)

]

, (3.6)

where the contributions proportional to nl are listed separately and Lx = log x. In figure 4

the expansions of the quantity z
(3),M
m up to xn (n = 1, 3, 5, 8) are shown together with the

exact expressions where nl = 3 has been chosen corresponding to the case Mf = Mc and

Mq = Mb. One observes a rapid convergence when including successively higher orders.

In table 1 numerical results for the individual coefficient functions, for z
(3),M
m and z

(3)
m are

shown in the region around x = 0.3 where again nl = 3 has been adopted.

Quite often it is convenient to consider the masses which only appear in closed loops

in the MS scheme. Thus, transforming Mf to the MS scheme leads to the following modi-

fications of eq. (3.5):

z(2),M
m (x) → z(2),M

m (xf ) ,

z(3),M
m (x) → z(3),M

m (xf ) + C2
F TF nm∆zf

m(xf ) , (3.7)
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x zFFM
m zFAM

m zFLM
m zFHM

m zFMM
m z

(3)M
m z

(3)
m

0.26 1.57 6.45 −1.93 −0.10 −0.55 12.15 −111.66

0.27 1.59 6.29 −1.89 −0.10 −0.52 11.89 −111.92

0.28 1.61 6.12 −1.84 −0.11 −0.50 11.62 −112.19

0.29 1.63 5.96 −1.80 −0.11 −0.48 11.37 −112.44

0.30 1.64 5.80 −1.76 −0.11 −0.46 11.11 −112.70

0.31 1.66 5.64 −1.72 −0.11 −0.44 10.86 −112.95

0.32 1.68 5.49 −1.68 −0.12 −0.42 10.61 −113.20

0.33 1.70 5.34 −1.64 −0.12 −0.41 10.37 −113.44

0.34 1.72 5.19 −1.60 −0.12 −0.39 10.13 −113.68

Table 1: Numerical results for x-dependent coefficients contributing to the three-loop quantity

z
(3)
m . For the renormalization scale µ2 = M2

q has been adopted.

with

xf ≡ xf (µf ) =
mf (µf )

Mq
,

∆zf
m(xf ) =

1

24

(

3

2
lµf

+ 2

)

x
{

24x3 log2(x) + 12x log(x) + 24x

+ π2
[

x2(4x − 9) − 3
]

− 6
[

(4x + 3)x2 + 1
]

[log(x) log(x + 1) + Li2(−x)]

− 6(x − 1)
(

4x2 + x + 1
)

[log(1 − x) log(x) + Li2(x)]
}

, (3.8)

where lµf
= log(µ2

f/m2
f ). In eq. (3.8) we introduced the scale µf for the renormalization

point of the quark mass mf which is different from µ implicitly present in eq. (2.9). The

latter contains the information about the running of αs whereas the former incorporates

the anomalous mass dimension of mf .

Let us for completeness also present the inverse relation 1/zm which is conveniently

expressed in terms of the MS quark mass mq. Using analogous conventions to (3.5) we find

(1/zm)(2),M (xq) = (Mq/mq(µ))(2),M (xq) = −z(2),M
m (xq)

∣

∣

∣

Lµ→lµ
,

(1/zm)(3),M (xq) = (Mq/mq(µ))(3),M (xq) = −z(3),M
m (xq)

∣

∣

∣

Lµ→lµ
+ C2

F TF nm∆zq
m(xq) ,

(3.9)

with

xq ≡ xq(µ) =
Mf

mq(µ)
,

∆zq
m(xq) =

1

192

{

48(3lµ + 7)x4
q log2(xq) + 144x2

q log(xq) + 312x2
q

+ 8π2
(

7x4
q − 15x3

q − 3xq − 1
)

+ 137

− lµ

[

−72x2
q + 24lµ

(

3

2
lµ + 4

)

+ 12π2
(

−2x4
q + 3x3

q − 3xq + 2
)

+ 13

]
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− 48

[

(7xq + 5)x3
q + xq +

3

2
lµ

(

2x4
q + x3

q − xq − 2
)

− 1

]

× [log(xq) log(xq + 1) + Li2(−xq)]

+ 48(xq − 1)

[

3

2
lµ

(

2x3
q + x2

q + xq + 2
)

+ 7x3
q + 2x2

q + 2xq + 1

]

× [− log(1 − xq) log(xq) − Li2(xq)]

}

. (3.10)

It is understood that the renormalization scale dependent logarithms appearing in

z
(2),M
m (xq), z

(3),M
m (xq) and ∆zq

m(xq) are defined as lµ = log(µ2/m2
q).

Again we can consider the masses which only appear in closed loops in the MS scheme,

which leads to the following modifications of eq. (3.9):

(1/zm)(2),M (xq) → (1/zm)(2),M (xfq) ,

(1/zm)(3),M (xq) → (1/zm)(3),M (xfq) + C2
F TF nm∆zfq

m (xfq) , (3.11)

with

xfq ≡ xfq(µf , µ) =
mf (µf )

mq(µ)
,

∆zfq
m (xfq) =

1

24

(

3

2
lµf

+ 2

)

xfq

{

− 24x3
fq log2(xfq) − 12xfq log(xfq) − 24xfq

+ π2
[

(9 − 4xfq)x
2
fq + 3

]

+ 6
[

(4xfq + 3)x2
fq + 1

]

[log(xfq) log(xfq + 1) + Li2(−xfq)]

+ 6(xfq − 1)
[

4x2
fq + xfq + 1

]

[log(1 − xfq) log(xfq) + Li2(xfq)]
}

.(3.12)

At the end of this section we want to compare our result with the one of ref. [18] where

z
(3),M
m has been computed in the linear approximation. Our result for the linear term reads

(Mf/mq(mq))
(3),M (xq)

∣

∣

linear
= xq

[

19.996 − 16.998 log xq + nl (−1.039 + 1.097 log xq)

]

.

(3.13)

We find agreement for three of the terms but the coefficient with the numerical value 19.996

takes the value 21.277 in [18].4 This difference can be explained by the approximations

performed in ref. [18] in order to extract the linear term of the mass relation.5

4. Wave function renormalization constant

In contrast to ZOS
m the wave function renormalization constant contains next to ultraviolet

also infrared divergences. Thus it is not possible to construct a finite quantity by consid-

ering the ratio between the on-shell and MS renormalization constant. For this reason we

discuss in what follows the coefficients of the ε-expansion separately.

4Note that nl as introduced in ref. [18] corresponds to our combination nl + nm.
5We thank A. Hoang for communications on this point.
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4.1 Two-loop result

The two-loop corrections to Z
(2),M
2 have been computed in ref. [7]. We confirmed this result

and obtain

Z
(2),M
2 =

1

ε

(

1

24
−

1

3
log x

)

+
1

4
L2

µ +

(

1

6ε
+

11

36
−

2

3
log x

)

Lµ

+
443

432
+

5π2

72
−

π2

4
x +

7

6
x2 −

5π2

12
x3 +

π2

6
x4

+

(

4

9
+

2

3
x2

)

log x +

(

2

3
+ x4

)

log2 x

+

(

−
1

3
+

1

2
x +

5

6
x3 − x4

)

[log x log(1 − x) + Li2(x)]

−

(

1

3
+

1

2
x +

5

6
x3 + x4

)

[log x log(1 + x) + Li2(−x)] . (4.1)

The convergence properties are very similar to z
(2),M
m and shall not be discussed here.

However, we would like to present a handy approximation formula which is obtained by an

interpolation where the logarithmic divergence for x → 0 is extracted before. It reads

Z
(2),M
2 =

1

ε

(

1

24
−

1

3
log x

)

+
1

4
L2

µ +

(

1

6ε
+

11

36
−

2

3
log x

)

Lµ

+
2

3
log2 x +

4

9
log x + 1.711 − 2.356x + 1.125x2 − 0.344x3 . (4.2)

and works to better than 1% for x ∈ [0, 1].

4.2 Three-loop result

We again refrain from listing explicit results for the x-dependent coefficients and refer

to the URL http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp07/ttp07-21/

where the expressions can be downloaded in Mathematica format. It is, however, use-

ful to present results for the analogue quantity to z
(3),M
m as defined in eq. (3.5). The cubic

and quadratic poles can be presented analytically and read

Z
(3),M
2

∣

∣

∣

ε−3
=

1 − ξ

96
,

Z
(3),M
2

∣

∣

∣

ε−2
= −

23

108
−

89

96
Lµ +

19

16
log x + nl

(

1

108
+

1

36
Lµ −

1

18
log x

)

+ ξ

(

1

32
−

1

32
Lµ +

1

16
log x

)

. (4.3)

Concerning the single pole and the finite part we again present handy approximation for-

mulae which we obtain by an interpolation to our expression after subtracting the singular

terms for x → 0. We cast the result in the form

Z
(3),M
2

∣

∣

∣

ε0
= a0 + a1Lµ + a2L

2
µ + a3L

3
µ + ξ

(

b0 + b1Lµ + b2L
2
µ + b3L

3
µ

)

,

Z
(3),M
2

∣

∣

∣

ε−1
= c0 + c1Lµ + c2L

2
µ + ξ

(

d0 + d1Lµ + d2L
2
µ

)

, (4.4)

– 13 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
6

where the coefficients are given by

a0 = 0.38426 log(x) [log(x) + 0.53600] [log(x) + 13.51219]

+25.383 − 22.326x + 11.127x log(x) − 1.473x2 ,

a1 = log(x) [−1.46528 log(x) − 5.54630] + 6.832 − 1.971x + 0.982x2 − 0.324x3 ,

a2 =
403

288
log(x) +

127

48
,

a3 = −
193

576
,

b0 =
407

864
+

π2

128
−

7ζ(3)

96
+

(

35

48
+

π2

64

)

log(x) +
9

16
log2(x) +

3

8
log3(x) ,

b1 = −
35

96
−

π2

128
−

9

16
log(x) −

9

16
log2(x) ,

b2 =
9

64
+

9

32
log(x) ,

b3 = −
3

64
,

c0 = log(x) [−1.34028 log(x) − 2.41667] − 1.352 + 2.367x − 1.180x2 + 0.387x3 ,

c1 =
23

36
+

257

144
log(x) ,

c2 = −
41

64
,

d0 = −
35

288
−

π2

384
−

3

16
log(x) −

3

16
log2(x) ,

d1 =
3

32
+

3

16
log(x) ,

d2 = −
3

64
. (4.5)

For the singular contributions, which we know to high precision, we provide five digits after

the decimal point whereas for the results from the fit three digits are given.

As in the case of zm we want to present the expanded results for x → 0 which are

given by (µ2 = M2
q )

Z
(2),M
2 =

1

ε

(

1

24
−

1

3
log(x)

)

+
443

432
+

5π2

72
+

4

9
log(x) +

2

3
log2(x)

−
π2

4
x + 2x2 −

5π2

12
x3 +

(

125

72
+

π2

6
−

11

6
log(x) + log2(x)

)

x4

+

(

−
22

75
+

16

45
log(x)

)

x6 +

(

−
379

7840
+

3

28
log(x)

)

x8 , (4.6)

Z
(3),M
2 =

1

ε3

[

0.0104 − 0.0104ξ

]

+
1

ε2

[

− 0.213 + (0.0093 − 0.0556Lx)nl + 1.1875Lx + (0.0625Lx + 0.0313)ξ

]

+
1

ε

[

− 1.3978 +
(

0.0151 + 0.0741Lx + 0.0556L2
x

)

nl − 2.6389Lx − 1.5069L2
x
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Figure 5: Finite parts of ZFML
2 , ZFMH

2 , ZFFM
2 , ZFAM

2 , ZFMM
2 for Feynman gauge (ξ = 0)

and Lµ = 0 as a function of x. The exact curves are represented by the thick and the small-x

approximations by the thin lines.

+2.4674x − 2x2 + 4.1123x3 +
(

−3.381 + 1.8333Lx − L2
x

)

x4

+(0.2933 − 0.3556Lx)x6 + (0.0483 − 0.1071Lx)x8

+
(

−0.1472 − 0.1875Lx − 0.1875L2
x

)

ξ

]

+31.2973 +
(

−1.9715 + 0.1765Lx − 0.0741L2
x + 0.037L3

x

)

nl

+2.2534Lx + 5.6204L2
x + 0.2731L3

x

+
[

− 14.695 + 19.328Lx + (1.5578 − 1.6449Lx)nl

]

x

+
(

24.2836 − 0.7778nl + 27.2951Lx − 0.6389L2
x

)

x2

+
[

− 23.8364 + 28.4056Lx + (−2.7416Lx − 0.6021)nl

]

x3

+
[

− 12.2965 + 7.3074Lx − 2.4541L2
x + 1.5787L3

x + (0.527 − 0.8466Lx

− 0.7222L2
x + 0.2222L3

x

)

nl

]

x4 + (1.0836 + 1.7272nl + 8.6633Lx)x5

+

[

− 2.8058 − 0.1342Lx + 3.125L2
x + 0.1389L3

x + (−0.7078 + 0.077Lx)nl

]

x6

+(0.4472 + 0.2937nl + 1.6073Lx)x7 +

[

− 0.9511 + 0.8787Lx + 1.4563L2
x

+0.0995L3
x + (−0.1831 + 0.0054Lx)nl

]

x8

+
(

0.4605 + 0.8834Lx + 0.5625L2
x + 0.375L3

x

)

ξ . (4.7)

In figure 5 we compare the exact results for the individual colour structures (for ξ = 0)
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Figure 6: Same as in figure 5 but for the 1/ε pole.

with the approximations including terms up to order x2. Only for x & 0.2 a difference is

visible.

For completeness we show the analogue curves for the coefficient of the 1/ε pole in

figure 6. It is interesting to mention that only ZFFM
2 has a non-trivial x-dependence beyond

the logarithmic divergences for x → 0.

5. Applications and conclusions

As an application of our result we want to discuss the charm quark effects in the relations

between the pole, the MS and the 1S quark mass. For illustration we use mb(mb) =

4.2 GeV, mc(mc) = 1.3 GeV, µ = mb and6 α
(4)
s (mb) = 0.2247. The relation between the

on-shell and the MS mass leads to

Mb =

[

4.2 + 0.401 +

(

0.199 + 0.0094
∣

∣

∣

mc

)

+

(

0.145 + 0.0182
∣

∣

∣

mc

)]

GeV , (5.1)

where the tree-level, one-, two- and three-loop results are shown separately. The contribu-

tions from the charm quark mass which vanish for mc → 0 are marked by a subscript mc.

One observes that the higher order contributions are significant. In particular, the two-loop

charm quark effects amount to 9 MeV and the three-loop ones to 18 MeV. A similar bad

convergence is observed in the relation between the 1S mass [1] M1S
b and the pole mass

Mb. For Mb = 4.8 GeV, mc(mc) = 1.3 GeV, µ = Mb and α
(4)
s (Mb) = 0.2150 it is given by

(see refs. [18, 40])

M1S
b =

[

4.8 − 0.049 −

(

0.073 + 0.0041
∣

∣

∣

mc

)

−

(

0.098 + 0.0112
∣

∣

∣

mc

)]

GeV . (5.2)

6As a starting point we use α
(5)
s (MZ) = 0.118 and perform the running and decoupling with the program

RunDec [39]. As in ref. [18] we consider the mass relations with four active flavours.
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However, the relation between the 1S and the MS quark mass is much better behaved as

can be seen in the following example where we have chosen M1S
b = 4.69 GeV, mc(mc) =

1.3 GeV, µ = M1S
b and α

(4)
s (M1S

b ) = 0.2167

mb =

[

4.69 − 0.382 −

(

0.098 + 0.0047
∣

∣

∣

mc

)

−

(

0.030 + 0.0051
∣

∣

∣

mc

)]

GeV . (5.3)

The two-loop charm effects amount to only 4.7 MeV and three-loop ones to 5.1 MeV. We

want to mention that in case only the linear approximation of the charm quark mass effects

is used the corresponding three-loop results in eqs. (5.1) and (5.3) read 0.0167 and 0.0037,

respectively. The analogue two-loop terms read 0.0109 and 0.0060.

We are now in the position to compare with eq. (168) of ref. [18] which provides the

relation between the 1S and MS bottom quark mass allowing for a variation of M1S
b , mc,

αs and the renormalization scale µ. Updating the coefficient of the mc term one obtains

the formula

mb = 4.169 GeV − 0.009 (mc(mc) − 1.4 GeV) (5.4)

which has an accuracy of better than 0.01% for 1.1 GeV < mc < 1.7 GeV. Within the

numerical accuracy eq. (5.4) is identical to the one where only the linear terms are used at

order α2
s and order α3

s (as in ref. [18]). This is due to a huge cancellation between two and

three loops in the terms beyond the linear approximation which can be seen from eq. (5.3)

and the numbers given below this equation.

A further application of our result would be the incorporation of our corrections in the

analysis of the bottom quark mass determination from the Υ(1S) system. In the analysis

performed in ref. [41] the charm quark mass has not been considered and an uncertainty

of ±10 MeV has been assigned which could be reduced to a large extend.

To conclude, in this paper we have computed the three-loop QCD corrections to the

on-shell renormalization constants for a heavy quark mass and the corresponding wave

function where a second massive quark appears in closed loops. The two-scale three-

loop diagrams are analytically reduced to 27 master integrals. The ε-expansion of the

latter is computed in analytical form, except for six coefficients for which one- and two-

dimensional integral representations are available. We derived a compact expansion of the

renormalization constants in the limit where the second quark mass is small. A rapid

convergence is observed providing a good approximation to the exact result even close to

the equal-mass case.
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A. Master integrals

In this appendix we collect the master integrals appearing in our calculation in graphical

form.
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6.1 6.2 6.3

Figure 7: Three-loop master integrals with six lines. Solid and dashed lines denote massive lines

with masses mq and mf , respectively. Wavy lines are massless scalar propagators.

5.4 5.4a
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5.2 5.2a

5.1 5.1a

Figure 8: Three-loop master integrals with five lines.
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Figure 9: Three-loop master integrals with four lines.
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Figure 10: Three-loop master integrals with three lines.
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